REVIEW
OF SEMICONDUCTOR
PROPERTIES
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. Chapter 1, the properties of sunlight were reviewed. It is now
apprepriate to lock at the properties of the other important com-
ponent in photovoliaic solar energy conversion, sericonducting
material.

The zim of this chapter is not to treal the properties of semi-
conductors rigorcusly frem fundamentals. Rather, it is to highlight
those properties of semiconductors that are important in the design
and operation of solar cells. As such, the chapter may suffice for
quick revision for readers alveady acqusinted with these properties
while containing adequate information fo sllow those not as wsll
scquainted to establish 2 sramework on which subseguent material
czm he supported. To sirengthen this framework, readers in the lal-
ter category ave referved ic one of the many textbooks specifically
Girected 2% tveating semiconductor properbies mors fundamentally
{Befs, 2.1 10 2.4).




Most of the photovoltaic materiais described in this book are crystal-
line, ai least on a microscopic scale. Ideal crystalline material is charae.
terized by an crderly, periodic arrangement of the atoms of which it
is composed.

In such an orderly airangement, it is possible to builg up the
entire crystal structure oy repeatedly stacking a small subsection, The
smallest such section with which this is possible is known as 2 primi-
tive cell.  Such primitive cells naturally contain all the information
requived to reconstruct the locations of atoms in the crystal but
oiten have awkward shapes, Consequently, it can be more convenient
to work with a larger unir celil which also contains this information
but generally has a simpler shape. For exampie, Fig. 2.1(a} shows the
unit ceil for an atomic arrengement known as face-centered-cubic
and Fig. 2.1(b) shows the corresponding primitive cell. The divec-
tions defining the cutline of the unit cell are orthogonal, whereas this
is not the case for the primitive cell. The length of the edge of the
unit cell is known as the laftice constant,

The orientation of planes within the crystal can be expressed
in terms of the unit cell structure by using the system of Miller indices,
The vectors defining the cutline of the unit cell are used as the basis
of a coordinate system as in Fig. 2.1{a). A plane of the orientation
in guestion is imagined passing through the crigin of the cocrdinate
sysiem. ~ Then the next plane parallel to this which passes through
atomic sites along each of the coordinate axis is considered. An
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Figure 2.1, (8) Unit e=ll for the face-centered-cubic
atomic arrangement. The unit cell is selected in this case so
ihat the %w./wﬁmowm defining its outline ave orthegonal. The
veetors 2, b, and ¢ are unit veciors in each of these direc-
tions. {b) Primitive oell for the same atomic arrangement.
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Am.v HModel of the diamond lattice which indi-
ate mic structure of many of the semiconductors
c f Hw@@.om.wmwnm in sclar eells. Also shown is the outline of
the unit cell. (b) View of the same struciure looking in
the [1G0G] directioa. {c}, (8) Views in the fi11} Mwm
[110] directions, wmmMumomémmﬁ w

2.2).
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cking at the lattice from se-
cte hlight the substantial differences in the
physical arrangement of atoms in different

. : ent t dizections which give rise
to directional variations of im

T unportance in solar cell work {e.g., see

£n electron in free space has an esseniizlly continucus range of
energy values that it can aitain. The situation in a crystal can be
quite different.

Electrons associated with isolated atoms have s well-defined
sei of discrete energy levels available to them. As several atoms ave
brought closer together, the original levels spread out into bands of
asllowed energy as indicated in Fig. 2.4. When the atoms sre in
ordered airangements as in crystals, there will be characteristic dis-
tances between them. Figuve 2.4{z) shows the case of 2 crysial wheve
the characteristic separation between atoms, d, is such that the crys-
tal has bands of energies zliowed to electrons {coirrvesponding to the
atomic energy levels) separated by bands of forbidden energy. A
gifferent situation is shown in Fig. 2.4(b), where the bands have
overiapped fo give virtually a continuum of allowed energies at the
value of d characteristic of a different crystalline material
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Figure 2.4. Schemstic indicating how the discrete energies
aliowed to elecirons in an isclated atom split up into bands
of allowed energies when 2 number of similar stcms are
brought togeiher in 2 crysial:

{a) For this case, d, ithe characisristic spacing of atoms in
a erystal, is such that there are bands of enevgies sl-
lowed to clecirons separafed by bands of forbidden
energy.

{b) In thic cese, d is such thai the uppermost bands have
overiapped.

i

R

id

i

e

L5

=



At low temperatures, electrons in a crystal cecupy the lowest possible
energy states.

At first sight, it might be expected that the equilibrium state
of a crystal would be one in which the elec s
allowed energy level. However, this is not the case. A fundamental
physical theovem, the Pauli exclusion principie, implies that each
allowed energy level can be occupied by, at most, two electrons, each
of cpposite “spin.”’ This means that, al low temperatures, all available
states in the crystel up o a certain energy level will be occupied by
two electrons. This energy level is known as the Fermi level {Ey).

As the tempersture increases, some electrons gain energy
in excess of the Fermi level. The probability of occupation of an
altowed electron state of any given energy & can be calculated from
statistical considerations for this more general case, izking inio ac-
count the constraints imposed by the Pauli exclusion principle {Refs.
2.1 to 2.4). The result is the Fermi-Dirac distribution function f{X),
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where & is 2 constant known as Boltzmann’s consiant and T is the
absolute temperature. This function is plotted in Fig, 2.5. Near gb-
solute zero, f(E) is essentially unity, as expected, up 10 an energy
equal ic &y, and zevc above E,. Asthe temperature increases, there
is a smearing cut of the distribution, with states of energy higher
than Er having a finite probability of occupsation, and states of energy
below Ep having z finite probability of being empty.

it is now possible to describe the differences among metals,
insulators, and semiconductors in terms of electronic band structuye,

Metals have an electropic structure such that £ lies within an al
lowed band (Fig. 2.6). The cause of this wmey be thet there are insuf-

h

cient elecirons gvailable to £l an available band if the band siruc-
ture is as shown in Fig. Z.4{a}, ov aliernatively, that there are
overlapping bands as in Fig. Z.4(b). Insulstors have one band fully
occupied by electrons and & large energy gap betwesn this band and
the next highest band, which is devoid of electrons 2t low tempers-
tures. From the discussion in the sarlier part of this section, it fol-
lows that By must lie within the forbidden band (Fig. 2.8).

A band in which there are no clecirons obviously cannot make

ot
0

T,>T,>0K

s

m,wm_.:.mmm.m,mmﬂm..wﬁmm&mﬁmvﬁﬁow ?mnﬁmm. mwm.wmm
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Figure 2.8. Diagrams showing the way in
staies are cccupied by slecirons in:

(2} A metal

{b} An insulstor.

{2} A semicondustor.
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any contribution to cwrent flow in the crystal. More surprisingl
neither can a compleiely full band. To contribute to su uch mmﬁmwm
m.wmmﬂem must extract energy from the applied field. Ina completely
wmm band, this is not possible. There > vacant allowed ener
‘wm in mﬂbo vicinity into which an electron can be ezcited Wmmnmm%
an insulator does not conduct electricity, whereas a mmmwmw. with 2
abundance of such levels, does. . B
w \u A mmgwoﬂsmmnw% is just an insulaior with a narvow forbidden
vand gap. At low wmcmdmwmwrwmmw it does not conduct. At wdmwmw
temperatures, there is sufficient smeaving ocut of the mommmswwwwm
distribution function to ensure that some levels in the originally ¢ ww
pletely filled band {valence band) are now vacant and moﬁm%meWM
:mf-émﬁom@ band {conduction band) are occcupied. The electrons
in the conduction band, with an abundance of mewo%,rrwmﬁ eney
states in the vicinity, can contribute to current flows, Bince wrmm.w
mmm. now unoccupied levels in the vale mno band, an mmwogww% momwm-
bution also comes from electvons in this band, ,,

Lo

A very simple but reasonably good anzlogy to current flow pro-
cesses in a semiconducicr is provided by an idealized {wo-level
WMMMEWW meﬂuww {(8ig. 2.7). ﬁosm&mw the case where the botiom
o s station is completely filled with cars and the top level
completely empty, as in Fig. 2.7{a}. Then thers is no rocin for any
car to move. If one car is moved from the firsi io the mmmom;m Nmu«mm m.w
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Figure 2.7. m._wmwmm “parking-station” analog of conduc-
tion processes in a semiconductor:

{a} Mo movement possible.

: A

{b) Movement possible on both upper and lower levels,
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Sect. 2.6 Dynamics of Electrons and Holes

in Fig. 2.7(b), the car on the second level is free to move as rauch as
desived. This corvesponds $o an electron in the conduction banding
semiconductor. There will ¥ e a vacant momwﬁmm on the iower
level. Cavs adjacent to this position can move into i, leaving & new
vacant position behind. Hence, car motion is now possible on &
lower level as weill. This motion corresponds to the motion of mwmm-
trons in the valence band. mucwmmm of regarding the motion on the
lower level as the result of the movements of a numaber of cays, i can
be move simply described as the mmmwo.ﬁ of the single vacani position.
Similagly, in 2 crystal it is easier to think in terms of the motion of
vacant siates in the valence band. In many situations the correct
motion of the vacancy can be predicted if it is regarded as a physical
mﬁmﬂnwb of positive charge commonly om.ﬁm a hole. Hence, cuzrent
flow in a semiconductor can be regarded as i mwwm due io @Wm sum of
the motion of electrons in the conduction band and holes in the

valence band.
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The moticn of slectrons and holes in mmmﬁoaggmnfm@m in response 1o
applied forces differs from that of particles in free space. In addition
to the applied force, there is always the sffect of the periodic forces
of the crystal at o%m However, resulis of quantum mechanical calcu-
lations indicate that, in most situations of interest herein, concepis
developed for particles in free space can be applied to elecirons and
holes in semiconductoss, with some modifications.

For example, in the case of electrons in 2 crystal lying within
the conduction band, Newton’s law becomes

ep 2
Fem g=-" (2.2}
dt
where I is the gpplied for 3«« ws “sffactive mass” of the electron
which incorporates the mw f the pericdic force of the laftice

stoms, z2nd p is known as the mwm\.mw& momentum analogous to free

gpace %owmmarwﬁ.
For a free eleciren, ensrgy and momentum ave velated by 2

sarabolic law
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) For carriers in semiconducicr , the situation can be more
.m@%ﬁ.mw. in some mm,ﬁn@ammmﬁm, , an &oma :8 law holds for oTn-
trong in the conduction band at sner gies ¢l )
irons i 8 close to the minim £
in this band: um S
i
. B
- M‘wﬁ. = ~ = { M A3
am, Ve

mnmdm.éwmwmmmmmwmmmohwowmmm&wmﬂahwﬁmﬁ mmmﬁw\t
in the valence band: C

£ e,
”m foregoing relationships are indicated in Fig. 2.8. Such semicon-
,.mﬁ ors are known as %&&.mm;@%@ semiconductors, and the most
imporiant technologically iz the compound semiconductor Gahs,
in other semiconductors, the minimum of the conduction

band can be at a finite value of crystal momentum, cheying a rela-
tionship:
_ {p- Poi®

xmﬁ (2.8}
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Figure 2.8. Energy~crystal momentum relationships near
the band edges for an indirect-band-gap semiconducior.
Also shown is the energy band spatial representation.

The valence band can exhibit a similar relationship:

mrnuc _E= M»(w mQO\ MN,MW
Nw\,\;

If p, = po, the semiconducior hes a direct band-gap. However, if
Po ¥ Dy, the band-gap is called indirect. The most commeon elemen-
tal semiconductors, Ge and 5i, both are indirect-band-gap materials.
In each csse, py =0 but p, is finite. Such a situation is shown in
Fig. 2.9,
Note that the common mmmwmmmmemﬁom of energy relations in
semiconductor devices where energy is ploitted as 8 function of dis-
tence {as azlsc indicated in Figs. 2.8 and 2.9} does no m ffeventiate
between direct- and indirect-band-gap semiconductors.

2.7 EMERGY DENSITY OF STATES

The number of allowed states per unii volume in 2 semiconductor is
obviously zerc for energies corresponding tc the forbidden gap and
nonzero in the zliowed bands. The guestion avises as to jusi how
many states for electrons zre distributed within the allowed bands.
An answer can bs m und re mmmﬁw, 1y simaply {Refs, 2.1 to 2.43,
m;wmm‘wmﬁmmﬂ%@mm&mmmmnmnﬁ@mﬁtmﬁmmwﬂ;nmwm%p
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Figure 2.10. (a) Band representation of 2 semiconducior,

{b) Ccﬁomwuowﬁ_um energy density of allowed siaies for
elecivons. (¢) Probability of cccupation of these states.
{(d} Resuliing energy disiribution of electrons and holes.
Mote that most are clustered near the edge of the respective
band.
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viers can be treated similaxly to free carriers. e number of allowed
states per unit volume and energy, N{(¥), A 0 energy £ near the
conduction-band mmmm {in the absence of anisctrop .ww given by

w372
. 8/ Zam] . V3 .
N(E)=—2"0e (o gy (2.8)

bl

where A is Planck’s ovwmwmﬁ similar expression holds for energies
nesr the valence-band edge. Mnmmmm distributions of allowed states ave

Bq. {2.8}] and the nrobability

Hnowing the den :d\ of allowed states {
1 G {2, Mm it is now possible o calcu-
ele

f these states [E
ion

late the actual energy distribution of electrons and holes. The resulis
are shown schematically in Pig. m_wm

ing o mwm nature of the Fermi-Dirac distribution function,
ns in ths mbmmn: n band and holes in the va-
sieve m near the band v&wwﬂ The total number in

¥ band can wm und by performing an w?mmwmﬁomk The number
of electrons in the ¢ wawﬂﬁom band per unit volume of the crystal,

B
pe i

Sect. 2.8 BDensities of Blectrons and Holes

n, is given by

Mﬁma max o ro oo
n= HEYN{E)DE (2.5}
w\.«wn
LY & +inm and
Since £, is many &7 1 v than Kz, f{#) for the conduciion pand
reduces to
fE) ~ e ETERIRT (2.10}
AY

and the upper limit, E, .., can be replaced by infinity with litile
error. Therefore
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Changing the veriable of integration tc x = (£ - £} [RT giv

po
m{« 2m A2 G(EF )R T § 2R g (212

2 Ay
n= im, R H %}
3 e ;
h A
m
The integral in this expression is in standar m and equals+/ 7/ 2
Hence,
£ e L2
P iqﬂ:\umvwmrﬁ(m Bmm WET «N%MN«
n= 2Ly 2 £ i j
vk /
. Bp ~E3kT
n=Nge"r (2.2.4)
where N, is & constant 2t fizxed T known as the effective density of
edem ey O L 2%
siates in the conduction bend end is defined by comparing £.gs. 2.183)

) W
and {2.14). Similarly, the total number of holes in the valsnce band
ser unit volurae of the crysisl is given by

] g, ~Eg)/kT 3 15
p =i, E T EE {2.18)
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Lot

with Ny, the effective density of sistes in the vale igi
iates in the valence band, similarly valence electrons, so each covalent bond shares an electron oviginat-

defined, . .
S ; \ . ing from the central atom and one originating from the neighboring
" For the ideslized case of & pure and pe ﬁm semiconductor atom
without surfaces, n e rmwn because each electro R e @ :
m p each electro Wm conduction For the case shown in Fig. 2.11{a}, the semiconductor can-

band leavesa v ‘ enc =
band leaves a vacancy or hole in the valence band. Ucmnmu not conduct electricity. However, at higher temperatures, some
electrons in the covalent bond can cobtain encugh energy ic bresl

free from the bond as shown in Fig. Z.11(b}). In this case, the Q.mm.

irons releassd are free tc move mwoq& throughout the crystal and can

o3
i
-
il
o
L
N3
foud
2]
S’

- - 2 — AT (B, ~E BT
o =nr =1 y/ m}n\. ;€ v ¢ . . - P B . .
15 oV 917 contribute to current flows. Electrons in covalent bonds in the vicin-
P HY< 8 H . 2 T . I . N e
=N w..«.«._.@»mm% g s / ity of the broken bond can alsc move into the loecation left vacant in

this bond, leaving another broken bond behind. This process siso
contributes to current flow.

Reverting to the terminclogy of previous sections, ax eleciron
released from a covalent bond can be mmmamﬁqam as being in the con-
duction band, wheveas those associated with covalent bonds ave in
the valence band. A broken bond can be identified as 2 hole in the

Le ..‘3 P . M .
winere n; 1s known as the “intrinsic concentration’ and E, is the width

e F 2% - . s N h
of the forbidden gap between the conduction and valence bands.
Note also from Eq. {2.18) that

o (Ep~En R . B ~Ep)jkT
Nee 8 TR =y, oo mEOT (2.18) valence band. The minimum energy reguived o emwmmmm zu electron
which gives from a onc&.mww wo.mm wm then sgual to the width of the forbidden
band gap in the semiconducior. 5
2 o+ E o The bond model is pavticularly useful for discussing the 2
Ep = leﬁ,lL| NM n m v (2.19) fects of impurities in silicon upon iis ele ﬁémwn properties. In the
& Z YA ﬁ. Direction of
. = . . efectric field
fience, the Ferini level in a pure and perfect semiconductor lies close T Free elecron from broken bond
to midgap, being offset only by differences in the sffective dens sity of { I | i Yo
siates in the conduction and valence bands. illm m m o Ow %uw g\ —
) Covalent bonds Alnu e Electron from this
25 BOND MODEL OF A 230U IV SEMICOMDLISTD {2 slectrons/bond} % \\Uoumomo n.mué,mo
H =W A GHOUR 1Y SEMICONDLUCTOR broken bond
Some of the more fundamenial of the serniconductior properties de- > O«/ O= e i ===
scribed up to now can be locked at .umwwm a different viewpoint for a 5 atom Broken bond
class of semiconductors represented by those belo onging to group IV
of the periodic table of chemical wmmﬁm:.wm., Although the following o =
“bond model” description wm not universally valid for zll semicon- w q " mw!.l
nwsl.. ing material, it does sliow the effects of impuzities upon the | : _M
elecironic meamme@mm of semiconduciors tc be introduced ina simple {a) ib)

NANNEr,

‘The chavacteristic laitice structure of 2 semiconductor from
w;mmm IV of the periodic {able was shown in Fig. 2.8. 4 schematic
,mwaoﬁﬁwmw%bw& representation of the silicon latiice is shown in Fig.
2. ,wwmv Hach silicon atom is bonded to four neighbors ! by covalent
conds. Hach covalent bond requires two slecirons. Silicon has four

Figure 2.131. Schematic representation of the silicon crystal

lattice,

(a}) Mo covaleni bounds broken.

(b} ©One covzlent bond broken, showing the raotion of the
released electvon as weil as the motion of a nearby
bonded eleciron into the pesition left vacant.
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@

next section, the effects of very specialized impurities known as
@anﬁmmwm @ummﬁw m.

impurity atcms can be incorporated in 2 crystal structure in fwo
ways. They can occupy positions squeezed in betwsen the atoms of
the host crystal, in which case they ave known as inferstitie! impuri-
ties. Alternatively they can substituie for an atom of ‘.3 host crvs-
sl maintaining the regular atomic arvangement in the crystal siruc-
ture, in which case thev are known as mzmmz tional wﬁﬁg}ﬁ&

Atoms from groups ¥ and V of the pericdic table act as
substitutional impurities in silicon. b portion of the lattice wheye 2
sroup V impurity {e.g., phosphorus) has replaced a silicon atom is
shown in Fig. 2.12. Four of the valence clectrons ave used up in
covalent bonds, but the fifth is in a different situsticn. tisnotina
covalent bond, so it is not in the velence band. For the case shown,
it is tied to the group V 2iom and so is not free to move through the
lattice. Hence, i is not in the conduction band either.

it 3@5 be expected wmn& only a small amount of energy is
required o release this extra electron compared to that required to
free pwmn?msm wmaw d up in covalent bonds. This is in fact the case.
A rough estimate of the energy reguired can be found by noting the
&Bmmﬁww o an mmmmcgow tied to & hydrogen atom. The expression for
the icnization energy { the energy reguired to release the electron) in

M

__ti--Extraelection
e =
L I
O - O
Group V
atom

|
I

%

Figure 2.12. Portion of the silicon lattice where a group V
i silicon atom.

Seci. 2.10 Group Il and V Dopanis Pt
the latter case is {Refs. 2.1 t0 2.4}
i megt n , T o
£; = ——=— = 13.5 electron volis {eV} {2.20;}
SEA”
where m, is the electron’s rest mass, ¢ the elecironic chazge, and g4
the permittivity of free space. The exira elecirs w is wmm mm,ow Y
atom, which has one unneutralized positive nwmﬁm) w 1 nMﬁwmmmw oT

for the iconization energy in thi m case is ﬂmemwssm similay. The radiuvs

vilas
of the orbit tums out io Wm much lavger than the mwmwomﬁm distance,
50 €4 in Bg. {2.20) shouwld be replaced by the mmw mittivity of stticon
{11.7¢5). Since the orbiting electyon experiences the periodic forces
.
<1

of the mmwmaﬁ lattice, the electron’s mass alsc should be replaced
an effective mass Nwme\wwo ~ 0.2
@ m

(‘v

. for silicon}. Hence, the energy rve-
cod to frae the extis electron is given by

This is much less than the W%ﬁﬁmw energy of silicon of 1.1 V. A

free electron is in the conduction band. Hence, the extra sleciron
tied to the group V siom liss m.w an wmmmw E/ wﬂa% the edge of the
conduction band, as illustrated in % . me Mote that this places

an allowed energy level within the “forb tﬁmmm gap.
1

in an analogous way, a group Il impurity does not have
enough @wmmnm glectrons to satisfy the four covaleni bonds. This
gives rise to 2 hole tied f0 the group III atom. The energy reguired

to relesse the hole is zimilay to that given by Bg. (2.21). Hence
group ¥iI atom gives rige to an allowed energy level ;
the f Qﬁ%mnm gap just sbove the valence-band edgs, as shown in

i i /7%

«
£, 7 Allowed level due .-
to donor impurity
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Since the energy required to release the exira slectron from a group
¥ atom is small, it is not unexvecied thsi, af room iemperature,
most of these elecirons have acguired this energy. Hence, most have
ieft the group V atom, with iis net positive charge, behind and are
free to move through the cyystel. Since group V atoms donste elec-
trong i m&m conduction band, they are known as donors. A more
tive idea of the number of slectrons that have obisined the
smoall amount of mﬁmpmw reguived can be obtained by referving to Fig.
2.24. HNote thei the form of the Feymi-Dirac distribution function
indicates thai donoy levels have only 2 small probability of being ce-
cupied.! This means that most electrons have left the donor site and
ave in the conduction band.

The total number of electrons in the conduction band and
holes in the valence band in this case can be found by considering
the condition for charge neutrality in the semiconductor:

Q
fo
09
S.i".
e+

o

p-n+Np =0 {2.22

e,
%!
N

where p is the hole density in the valence band, n the density of
conduction band elecirons, and Nj the density of ionized donors (i.e.,
positive charges leff behind when the electvon deparis). The other
important eqguation comes from Bg. (2.17)1:

2.23;

:\,’)
N

np = n

This relation is move gensval than for the case of pure semiconductors

oreviously discussed. =yuations (2.14), (2.18), and (2.22), in con-

junction with the Fermi-Divac ﬁmﬁuwrﬁ@w function, can be solved

to give precise waluss for n, p, and z, p under mmsmwww conditions.
£

Howsever, for most cases of ﬁwo&mu in this book, the approximate
but much simpler msthod of sclution outlined below will give ve-
T

sults of more than adsqusate BCCUTACY.

Since the vast majority of donovs will be ionized, N will be
neasty equal to the total densily of donowrs, Np. From Eq. {2.23),
n will be greater than p and, in fact, very muc ater when Ny be-
'The statistics governing the cccupation of the donor level are actuaily slighily

different from those mmemwﬁmm the occupaticon of levels within the allowed band,
Once a donor level is occupied by 2 single eleciron of either “spin,” the effective
positive charge on the central donor atom is neuiralized and there is no atirae-
tion that would allow cccupation by a second electron of opposite spin, This re-
sulis in an expression for the probebility of cccupation which differs slightly
from the Fermi~Dirac function. That difference is not important in this book.

Jk

3¢

g A
s 1 Eiectrons

e, 0000

“

Distance WED HE} Cayriers/unit energy

{a) ] )

Figure 2.14. (a} 3Band represeniation of a group IV semi-
conducior with a group V substitutional tmpurity of den-
sity Np per unit volume. (b} Corresponding energy den-
sity of allowed siates. (¢} Probability of occupation of
these states. (d) HResuliing energy distributions of elec-
trons and holes. (The casz shown would correspond io
quite high ﬁmwﬁﬁmumwgmm At more moderate temperaiures
the awuwmg:& of ogrﬁmﬁow of donor states by m@mﬁdﬁ
would be even smaller than shown.)
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comes large. Hence, the approximate sclution is
E‘W ( 2
oy
A p (2.24)
nf
b= TSNS i
Mp

&wmmomomma%mwﬁmmmm:m M,ww é@ﬂﬁﬂmﬁumm
These very easily give up @W r excess hole to the valence band or
equivalently accept an eleckes ,m om this m: . Counseguently, they
are known as geceptors. An ionized accepbtor has a net negative
charge. Hencs,
p-n-Ny; =48 {2.28)
where IV is the density of ionized accepto:

e approximale solution in this case is

M.«N 4 X ‘m,:% A

a~ AT o G0y
BN, {3.28)
n?
]
n < p
N,
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Owr thecretical understending of the properties of impurilies in
silicon other than those from groups Y and V is less developed, 2t
though the practical effects of such impurities are well knov

Just ss group III and V impurities introduce an allowed

energy level into the forbidden band gap of silicon, so do motre gen-
eral impurities. This is indicated in Fig. 2.16, which shows ihe al-

Q
£ “o3

The eguations for eleciron and hole densities derived in Bgs. (2.14
{2.15) apply to more general cases wwwm that for pure mmBMnom,

X PN AP ¥ £ -

ductors. For the case of material doped with donors {commonly

calied n-type maoteriol}, these become

S EF ~ES T

n=Ngp =N,e {2.27)
or, eguivalently, ok S R B " > A,
0033 o35 -
) 0093 5345 505 18
E 5 =n7im (V)
Ep-2.=kTin | — ] {2.28)
Ve 035 37 33 p37 832
2 .37 033 0.37
Similarty, for material doped with acceptors { p-fype maierial}, o Geceme 052 — e om
055 o 0.36
0.40 g1
o (B ~En}ikT 0.39 037 . 0.34
BEN, ntﬂmm TR (2.2%; 031 o °
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\z o PR n\mwﬂ«ﬂ\w «.w. GommE 0.22
&, - By =kTIn w, 7 \“ (2.30) 0.0a5 2057 2082 003
N, L
B AR Ga in 7¢ Co 2Zn Cu Au Fe o
As the semiconductor material becormes more heavily doped, PR Si Ge sn o _ %
the Fermi level £ moves away from imidgap and approaches the 0003 ooz S T 0%05
. . ) eve eve
conduction band fo~ n-fype material oy the valence band for p-type
rnaterial, as mﬂ@ Wi 1. Fig. 2.15
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Figure 2.18. Energy levels within the forbidden gap fora

range of impurities in 8i and fmmwm w .wanaawom an aceeptor
level, D 2 doncy level. {Afier 8. M. Sze and J. Lrwin, Solid-
mwm?w Electronics 11 {1868), 589.]

Figure 2.15. Bnergy of the Fewwi level as z function of
the co dmmﬁﬁ,wag of donors and accepiors.
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lowed energy levels introduced by a range of impurities in the silicon
a8 well as the compound semiconductor Gaks. Some impurities in-
troduce multiple energy levels, as shown. Crystal defects act in 2
similar way ic introduce allowed levels intc the forbidden gap.
Impuritiss, particularly wmo% whaich introduce energy levels
near the middle of the band gap, gensrally degrade the properties of
semiconductor devices. tgwmtw% conecen ﬂw tions in the starting
Bmwoﬁm,, used in the fabrication of these devices sre therefore kept

s low as technology will allow—generally less than 1 part per billion.

h)

dmmwwm’,Sﬁrmmom%“ﬁmwa:m@mw.mmw mwmgmﬁmw
moving free electron would have an acceleratic m\.‘ in a direc-
ﬁ.om opposite to the field, with its velocity in ewum dizection increasing
{53 time. The electvon in a crysial structure is in a different situs-
ﬁoww it moves with a different mass and will not continue mmwmw@amw-
ing for very iong. It will eventually collide with a lattice atom, or an
impurity atom, or a defect in the crystal structure. Such 2 collision
will tend to randomize the electron’s motion. In other words, it will
tend to reduce tie excess velocity that the slectron picked up in the
spplied field. The “average” time between collisions is called the
relaxation time, ¢,. This will be determined by the random thermal
velocity of mwmmﬁboum which is generally much larger than field im-
paried velocities. The average velocity increase of electrons meﬁmmwp
Mowmmwow,m caused 3. the field is called the drift velocity and is given

)
[
o

I

Q&.I

D |t
g,

2 | pet

for elecivons in .mm conduction band. {The factor of 2 disappears if
t, is mﬁmmmmmo, over all electron velocities.} The electron carrier mo-
bility is defined ¥ w the ratio
_ug b,
Me =77 = % MMWMW
£ m,

3 i ,. . . >.
ine correspending current density flow due o conduction band slec-
irons will be

Sect. 2.14 Carrier Transport a5
An anslogous equation for holes in the valence band is
dn = qunpk {(2.34}

The total current flow is w.mww the sum of these two components.
Hence, the conductivity, o of the semiconductor can be identified as

= g, G P (2.85)

where p is the resistivity.

Although the analysis resulting in Eq. (2.32) is simplistic, it
does sllow an intuitive understanding of how the carrier mobilitiss,
M, and a? change with changes in the density of dopanis, tempeze-
tuve, and electric field strength.

For relatively pure semiconductors of good crystaliographic
guality, the collisions thai randomize the cavvier velocities will in-
volve the atoms of the host crystal. However, ionized dopants are
very effective scatterers because of their associated net charge. Con-
sequently, 2s the semiconductor becomes more heavily doped, the
average time between coliisions and hence the mobility will decrease.
For good-quality silicon, empirical expressions relating the carrier
mobilities to the level of mo sents W {in cm ) ave {Ref. 2.5}

1285 .
u, = 65+ cm*/V-s
e 1+ »Ea\ 5 X 13 @Hm uoqw
47 3 (2.36)
G = AT - cm?/Vs
My %..ng%m»w\ﬁmx mewo\m me/V-s

Less specialized impurities as well as crystal defects will decrease mo-
bilities further, for similar reasons.

Incressing temperature will increase the vibration of the host
atoms, making them larger “targets,” again decressing the average
time between collisions as well as the csirier mobilities. This effect
becomes less pronounced at high doping levels, where ionized dopants
ave effective carrier scaticrers.

increasing the strength of the electyic field will mam@.&m@%
incresse the dvift velocities of casviers to values where they will b
come compaiable to the random thermal velocities. Hence, the toial
velocity of electrons will vltimately increase with field strength, de-

creasing the time between collisions and the m ncbilivy,




?mmﬁm.cﬁnwgﬁcma.mﬁmﬁa%‘mmwmwnmmﬁwaommmm“ﬁmmmwmw
also flow by diffusion. it is 2 well-known physical effect that any
excess conceniration of particles such as gas moleculss will tend to
dissipate iiseif unless constrained. The basic cause of this effect is
the random thermal velocity of the particles involved.

The flux of particles m proportional o the negative of the
concentration gradient {Fig. 2.17). Since curvent is proporticnal o

the flux of charged cu,ﬁﬁnwbm the current density corresponding to a
one-dimensional concentration gradient of electrons is

dn
v, =g, —— {2.37)

ax

where 7, is 2 constant known as the diffusion constant. Similarly,
for holes

%R = - mw.m\u).v. A Mmummw

Mote the sign difference between Egs. {2.87) and (2.38)}, which isdus
to the opposite types of charges involved. Dwilt and diffusion pro-
cesses gre mﬁﬂ&&mmgw&@ related and the ?wam ties and diffusion
constants are not independeni. Thev are interconnectsd by the
Einstein relations

kT ) 2T
De=rke amd Dy == rk (2.39)
1 g

Concantration

Figure 2.17. PRiffusive fux of cavriers in the presence of a
concentrator gradient.
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2T/q is a parameter that will appear often in relation to solar celis,
I has the dimensions of voliage znd the value of 26 mV al room
temperature, a value worth commitiing o memory!

2,15 SUMMARY

The major peints arising from this chapter ave the foliowing. Semi-

conductors have an electronic structure such that one band of al-
waﬁmm states virtually completely occupied by electrons {the valence
band) is separated by a forbidden energy gap from the next bang of
alicwed states, which is virtually devoid of electzons {the conduction
band). Current flow in semiconductors is due tc both motion of
electrons in the conduction Mumbm znd the effeciive motion of vacan-
cies or holes in the valence band. In many situations, elecirons in the
conduction band and holes in the valence band can be regarded as
free particles, provided that an “effective” mass is used to include
the effect of periodic forces of the host atoms in the mw%.&mﬂ Most
conduction-band electrons have energies close to that of the conduc-
tion-band edge, whereas most holes have energies close to that of the
valence-band sdge.

Semiconductors can be divided into “divect”- and “indirect’”-
band-gap types, depending cn the form of the relationship between
the energy of elecirons in the conduction band and their crystal
momentum.

Specialized impurities known as dopants, when introduce
into semiconductors, can conivol the relative concentrations of slec
trons in the conduc w on mwmm of a semiconducior and holes in the
valence band. Carriers in these bands can flow by drift and diffusion
when the appropriate perturbations ave present.

In Chapter 2, mmwﬁa;& Emm%womda processes ccecurring within
semniconductors when disturbed by light ave described. From the
fundamental mechanisms discussed in this and the nexi chapier, a
single system of seif-consistent eguations will be synthesized. This

system will be used in later chapters to establish the principles of
soler cell design.

ma

2.5 Por 2 cxysial ﬁ,r & mfum wnit cell, indicsie on a sketeh of the cell the
m@%@iﬁwm Q&\mmm, mes: {2) {100); (b) m 6); (g} (110} (& wwmv
Z.2. {a} Silicon solar cell wmwm@mﬁwﬂmw can be improved by selectively eich-
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2.5,

2.8.

2.7

2.8.

2.8.
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ing the cell surface to reduce reflection losses. Figure 7.6 showsa
silicon crystal surface originally orientated parallel to the (100)
plane which has been attacked by a chemical etch that etches af
different rates in different directions through the crystal. This ex-
poses the square-based pyramids shown. Given that the sides of the
pyramids zre all members of the {111} equivalent set of planes,
find the angle between cpposite faces of the pyramids.

{b) A fraction R of light incident normally on the original silicon sur-
face was reflected. Neglecting dependencies upon angle of incidence
and wavelengih, show that fraction reflected after the selective etch
is reduced to slightly less than R2,

Cne method of introducing impurities into silicon in controlled quanti-
ties is & technique known as ion implantation, Ions of the desired im-
purity are accelerated to high velocity and directed at the silicon surface.
If the ions impinged parallel {o each of the crystal direciions shown in
Fig. 2.3(b)-{d), in which case would you expect the ions to penetrate
the greatesi distance into the silicon?

An sllowed state for an electron in a semiconductor lies at an energy

equal to 0.4 eV above the Fermi level. What probability has this state

of being occupied by an electron under thermal equilibrium conditions

at 300 K?

Assuming that the effective masses of electrons and holes are equal {o

the free electron mass, calculate the effective density of states in the

conduction and valence bands for silicon at 300 K. Assuming a band
gap of 1.1eV, find the intrinsic concentration in silicon at this
temperature.

(a) Silicon is uniformly doped with 1022 phosphorus atoms/m®. As-
suming that all these donor impurities are ionized, estimate the
concentration of electrons and holes in this material under thermal
equilibrium at 300 K. Hence, calculaie the energy of the Fermi
level in this material below the conduction-band edge.

(b) Given that the donor level for phosphorus lies 0.045 eV below the
conduction-band edge, calculate the probability that this level is
oceupied by an eleciron and hence check on the assumption that
all donors are ionized, (Use Np =3 X 102° m™, Ny = 1025 m™3,
andn; = 1.5X 10'°m™.)

Using Eq. (2.38) for the electron and hole mobiliiies in silicon, estimate

the resistivity of the silicon specimen of Exercise 2.8.

Estimate the aversge time between collisions with the host atoms for

electrons in the conduciion band of lightly doped silicon.

An electric field of 10% V/m is applied to 2 specimen of silicon at 300 X

doped with 102? donors/m>. Given that the thermal velocity is 10° m/s,

compare the drift and thermal velocities for conduction-band electrons.

At what value of the field strength will these be compazable?

In a section of silicon at 300 K, the field strength is zero and condue-

tion band electvons have 2 concentzation that varies from 10?2 per m?

Chap. 2
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to 10?! per m? over a distance of 1 um. Assuming a linear variation of
elecivons, calculate the corresponding current density.
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